skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, X Sean"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Indexing is a core technique for accelerating predicate evaluation in databases. After many years of effort, the indexing performance has reached its peak on the existing hardware infrastructure. We propose to use ray tracing (RT) cores to move the indexing performance and efficiency to another level by addressing the following technical challenges: (1) the lack of an efficient mapping of predicate evaluation to a ray tracing job and (2) the poor performance by the heavy and imbalanced ray load when processing skewed datasets. These challenges set obstacles to effectively exploiting RT cores for predicate evaluation. In this paper, we propose RTScan, an approach that leverages RT cores to accelerate index scans. RTScan transforms the evaluation of conjunctive predicates into an efficient ray tracing job in a three-dimensional space. A set of techniques are designed in RTScan, i.e., Uniform Encoding, Data Sieving, and Matrix RT Refine, which significantly enhances the parallelism of scans on RT cores while lightening and balancing the ray load. With the proposed techniques, RTScan achieves high performance for datasets with either uniform or skewed distributions and queries with different selectivities. Extensive evaluations demonstrate that RTScan enhances the scan performance on RT cores by five orders of magnitude and outperforms the state-of-the-art approach on CPU by up to 4.6×. 
    more » « less
  2. We will demonstrate a prototype query-processing engine, which utilizes correlations among predicates to accelerate machine learning (ML) inference queries on unstructured data. Expensive operators such as feature extractors and classifiers are deployed as user-defined functions (UDFs), which are not penetrable by classic query optimization techniques such as predicate push-down. Recent optimization schemes (e.g., Probabilistic Predicates or PP) build a cheap proxy model for each predicate offline, and inject proxy models in the front of expensive ML UDFs under the independence assumption in queries. Input records that do not satisfy query predicates are filtered early by proxy models to bypass ML UDFs. But enforcing the independence assumption may result in sub-optimal plans. We use correlative proxy models to better exploit predicate correlations and accelerate ML queries. We will demonstrate our query optimizer called CORE, which builds proxy models online, allocates parameters to each model, and reorders them. We will also show end-to-end query processing with or without proxy models. 
    more » « less
  3. We consider accelerating machine learning (ML) inference queries on unstructured datasets. Expensive operators such as feature extractors and classifiers are deployed as user-defined functions (UDFs), which are not penetrable with classic query optimization techniques such as predicate push-down. Recent optimization schemes (e.g., Probabilistic Predicates or PP) assume independence among the query predicates, build a proxy model for each predicate offline, and rewrite a new query by injecting these cheap proxy models in the front of the expensive ML UDFs. In such a manner, unlikely inputs that do not satisfy query predicates are filtered early to bypass the ML UDFs. We show that enforcing the independence assumption in this context may result in sub-optimal plans. In this paper, we propose CORE, a query optimizer that better exploits the predicate correlations and accelerates ML inference queries. Our solution builds the proxy models online for a new query and leverages a branch-and-bound search process to reduce the building costs. Results on three real-world text, image and video datasets show that CORE improves the query throughput by up to 63% compared to PP and up to 80% compared to running the queries as it is. 
    more » « less